44 LambdaMart(
size_t ntrees,
double shrinkage,
size_t nthresholds,
45 size_t ntreeleaves,
size_t minleafsupport,
size_t esr)
46 :
Mart(ntrees, shrinkage, nthresholds, ntreeleaves, minleafsupport, esr) {
58 virtual std::string
name()
const {
66 virtual void init(std::shared_ptr<data::VerticalDataset> training_dataset);
69 virtual void clear(
size_t num_features);
76 std::shared_ptr<data::VerticalDataset> training_dataset,
83 std::shared_ptr<data::VerticalDataset> training_dataset);
virtual std::unique_ptr< RegressionTree > fit_regressor_on_gradient(std::shared_ptr< data::VerticalDataset > training_dataset)
Fits a regression tree on the gradient given by the pseudo residuals.
Definition: lambdamart.cc:47
Definition: dataset.cc:28
static const std::string NAME_
Definition: lambdamart.h:62
This class implements the basic functionalities of an IR evaluation metric.
Definition: metric.h:43
LambdaMart(const pugi::xml_document &model)
Generates a LTR_Algorithm instance from a previously saved XML model.
Definition: lambdamart.h:50
virtual void compute_pseudoresponses(std::shared_ptr< data::VerticalDataset > training_dataset, metric::ir::Metric *metric)
Computes pseudo responses.
Definition: lambdamart.cc:61
virtual std::string name() const
Returns the name of the ranker.
Definition: lambdamart.h:58
LambdaMart(size_t ntrees, double shrinkage, size_t nthresholds, size_t ntreeleaves, size_t minleafsupport, size_t esr)
Initializes a new LambdaMart instance with the given learning parameters.
Definition: lambdamart.h:44
Definition: lambdamart.h:33
double * instance_weights_
Definition: lambdamart.h:86
virtual void clear(size_t num_features)
De-allocates private data structure after training has taken place.
Definition: lambdamart.cc:41
virtual ~LambdaMart()
Definition: lambdamart.h:54
virtual void init(std::shared_ptr< data::VerticalDataset > training_dataset)
Prepares private data structurs befor training takes place.
Definition: lambdamart.cc:35