QuickRank  v2.0
QuickRank: A C++ suite of Learning to Rank algorithms
Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
[detail level 12345]
 Nquickrank
 Ndata
 CDatasetThis class implements a Dataset to be used for a L-t-R task
 Cexternal_sort_op_t
 CQueryResultsThis class wraps a set of results for a given query
 CRankedResultsThis class generates a ranked list of results
 CVerticalDatasetThis class implements a Dataset to be used for a L-t-R task
 Ndriver
 CDriverThis class implements the main logic of the quickrank application
 Nio
 CGenObliviousThis class is a code generator on QuickRank XML files
 CGenOpCondThis class is a code generator on QuickRank XML files
 CGenVpredThis class is a code generator on QuickRank XML files
 CSvmlThis class implements IO on Svml files
 Ctree_node
 Nlearning
 Nforests
 Cexternal_sort_op_t
 CLambdaMart
 CMart
 CObliviousLambdaMart
 CObliviousMart
 CRankboostThis implements the RankBoost algorithm
 CWeakRanker
 Nlinear
 CCoordinateAscentThis implements the Coordinate Ascent algorithm
 CLineSearchThis implements the Line Search algorithm
 CCustomLTR
 CLTR_Algorithm
 Nmetric
 Nir
 CDcgThis class implements the Discounted cumulative Gain DCG@K measure
 CMapThis class implements the average precision AP@k measure
 CMetricThis class implements the basic functionalities of an IR evaluation metric
 CNdcgThis class implements the Normalized Discounted cumulative Gain NDCG@k measure
 CTndcgThis class implements a Tie-aware version of Normalized Discounted Cumulative Gain TNDCG@k measure
 Noptimization
 Npost_learning
 Npruning
 CCleaverThis implements various strategies for pruning ensembles
 CLastPruningThis implements random pruning strategy for pruning ensembles
 CLowWeightsPruningThis implements random pruning strategy for pruning ensembles
 CQualityLossPruningThis implements random pruning strategy for pruning ensembles
 CRandomPruningThis implements random pruning strategy for pruning ensembles
 CScoreLossPruningThis implements random pruning strategy for pruning ensembles
 CSkipPruningThis implements random pruning strategy for pruning ensembles
 CPostLearningOptimization
 Npre_learning
 CPreLearningOptimization
 COptimization
 CBitArray
 CbitarrayBit array implementation (1 bit per element)
 CDevianceMaxHeap
 CEnsemble
 Cwt
 CmahheapMax-heap implementation with key of type float
 CMaxHeap
 Citem
 CObliviousRT
 CRegressionTree
 CRTNode
 CRTNodeHistogram
 CRTRootHistogram
 CsymmatrixSymmetric matrix implementation
 CSymMatrix