45 size_t nthresholds,
size_t treedepth,
46 size_t minleafsupport,
size_t esr)
47 :
LambdaMart(ntrees, shrinkage, nthresholds, 1 << treedepth,
58 virtual std::string
name()
const {
71 std::shared_ptr<data::VerticalDataset> training_dataset);
83 virtual std::ostream &
put(std::ostream &os)
const;
Definition: dataset.cc:28
virtual std::ostream & put(std::ostream &os) const
Prints the description of Algorithm, including its parameters.
Definition: obliviouslambdamart.cc:39
virtual ~ObliviousLambdaMart()
Definition: obliviouslambdamart.h:54
static const std::string NAME_
Definition: obliviouslambdamart.h:64
Definition: lambdamart.h:33
virtual std::unique_ptr< RegressionTree > fit_regressor_on_gradient(std::shared_ptr< data::VerticalDataset > training_dataset)
Fits a regression tree on the gradient given by the pseudo residuals.
Definition: obliviouslambdamart.cc:55
Definition: obliviouslambdamart.h:33
friend std::ostream & operator<<(std::ostream &os, const ObliviousLambdaMart &a)
The output stream operator.
Definition: obliviouslambdamart.h:77
virtual pugi::xml_document * get_xml_model() const
Return the xml model representing the current object.
Definition: obliviouslambdamart.cc:66
virtual std::string name() const
Returns the name of the ranker.
Definition: obliviouslambdamart.h:58
size_t treedepth_
Definition: obliviouslambdamart.h:73
ObliviousLambdaMart(size_t ntrees, double shrinkage, size_t nthresholds, size_t treedepth, size_t minleafsupport, size_t esr)
Initializes a new ObliviousLambdaMart instance with the given learning parameters.
Definition: obliviouslambdamart.h:44