QuickRank  v2.0
QuickRank: A C++ suite of Learning to Rank algorithms
Class Hierarchy
This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 1234]
 CBitArray
 CbitarrayBit array implementation (1 bit per element)
 Cquickrank::data::DatasetThis class implements a Dataset to be used for a L-t-R task
 Cquickrank::driver::DriverThis class implements the main logic of the quickrank application
 CEnsemble
 Cquickrank::data::external_sort_op_t
 Cquickrank::learning::forests::external_sort_op_t
 Cquickrank::io::GenObliviousThis class is a code generator on QuickRank XML files
 Cquickrank::io::GenOpCondThis class is a code generator on QuickRank XML files
 Cquickrank::io::GenVpredThis class is a code generator on QuickRank XML files
 CMaxHeap< val_t >::item
 Cquickrank::learning::LTR_Algorithm
 Cquickrank::learning::CustomLTR
 Cquickrank::learning::forests::Mart
 Cquickrank::learning::forests::LambdaMart
 Cquickrank::learning::forests::ObliviousLambdaMart
 Cquickrank::learning::forests::ObliviousMart
 Cquickrank::learning::forests::RankboostThis implements the RankBoost algorithm
 Cquickrank::learning::linear::CoordinateAscentThis implements the Coordinate Ascent algorithm
 Cquickrank::learning::linear::LineSearchThis implements the Line Search algorithm
 CmahheapMax-heap implementation with key of type float
 CMaxHeap< val_t >
 CDevianceMaxHeap
 Cquickrank::metric::ir::MetricThis class implements the basic functionalities of an IR evaluation metric
 Cquickrank::metric::ir::DcgThis class implements the Discounted cumulative Gain DCG@K measure
 Cquickrank::metric::ir::NdcgThis class implements the Normalized Discounted cumulative Gain NDCG@k measure
 Cquickrank::metric::ir::TndcgThis class implements a Tie-aware version of Normalized Discounted Cumulative Gain TNDCG@k measure
 Cquickrank::metric::ir::MapThis class implements the average precision AP@k measure
 Cquickrank::optimization::Optimization
 Cquickrank::optimization::post_learning::PostLearningOptimization
 Cquickrank::optimization::post_learning::pruning::CleaverThis implements various strategies for pruning ensembles
 Cquickrank::optimization::post_learning::pruning::LastPruningThis implements random pruning strategy for pruning ensembles
 Cquickrank::optimization::post_learning::pruning::LowWeightsPruningThis implements random pruning strategy for pruning ensembles
 Cquickrank::optimization::post_learning::pruning::QualityLossPruningThis implements random pruning strategy for pruning ensembles
 Cquickrank::optimization::post_learning::pruning::RandomPruningThis implements random pruning strategy for pruning ensembles
 Cquickrank::optimization::post_learning::pruning::ScoreLossPruningThis implements random pruning strategy for pruning ensembles
 Cquickrank::optimization::post_learning::pruning::SkipPruningThis implements random pruning strategy for pruning ensembles
 Cquickrank::optimization::pre_learning::PreLearningOptimization
 Cquickrank::data::QueryResultsThis class wraps a set of results for a given query
 Cquickrank::data::RankedResultsThis class generates a ranked list of results
 CRegressionTree
 CObliviousRT
 CRTNode
 CRTNodeHistogram
 CRTRootHistogram
 Cquickrank::io::SvmlThis class implements IO on Svml files
 CsymmatrixSymmetric matrix implementation
 CSymMatrix< T >
 Cquickrank::io::tree_node
 Cquickrank::data::VerticalDatasetThis class implements a Dataset to be used for a L-t-R task
 Cquickrank::learning::forests::WeakRanker
 CEnsemble::wt