QuickRank
v2.0
QuickRank: A C++ suite of Learning to Rank algorithms
Main Page
Related Pages
Namespaces
Classes
Files
Class List
Class Index
Class Hierarchy
Class Members
Class Hierarchy
This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level
1
2
3
4
]
C
BitArray
C
bitarray
Bit array implementation (1 bit per element)
C
quickrank::data::Dataset
This class implements a
Dataset
to be used for a L-t-R task
C
quickrank::driver::Driver
This class implements the main logic of the quickrank application
C
Ensemble
C
quickrank::data::external_sort_op_t
C
quickrank::learning::forests::external_sort_op_t
C
quickrank::io::GenOblivious
This class is a code generator on QuickRank XML files
C
quickrank::io::GenOpCond
This class is a code generator on QuickRank XML files
C
quickrank::io::GenVpred
This class is a code generator on QuickRank XML files
C
MaxHeap< val_t >::item
▼
C
quickrank::learning::LTR_Algorithm
C
quickrank::learning::CustomLTR
▼
C
quickrank::learning::forests::Mart
▼
C
quickrank::learning::forests::LambdaMart
C
quickrank::learning::forests::ObliviousLambdaMart
C
quickrank::learning::forests::ObliviousMart
C
quickrank::learning::forests::Rankboost
This implements the RankBoost algorithm
C
quickrank::learning::linear::CoordinateAscent
This implements the Coordinate Ascent algorithm
C
quickrank::learning::linear::LineSearch
This implements the Line Search algorithm
C
mahheap
Max-heap implementation with key of type float
▼
C
MaxHeap< val_t >
C
DevianceMaxHeap
▼
C
quickrank::metric::ir::Metric
This class implements the basic functionalities of an IR evaluation metric
▼
C
quickrank::metric::ir::Dcg
This class implements the Discounted cumulative Gain DCG@K measure
▼
C
quickrank::metric::ir::Ndcg
This class implements the Normalized Discounted cumulative Gain NDCG@k measure
C
quickrank::metric::ir::Tndcg
This class implements a Tie-aware version of Normalized Discounted Cumulative Gain TNDCG@k measure
C
quickrank::metric::ir::Map
This class implements the average precision AP@k measure
▼
C
quickrank::optimization::Optimization
▼
C
quickrank::optimization::post_learning::PostLearningOptimization
▼
C
quickrank::optimization::post_learning::pruning::Cleaver
This implements various strategies for pruning ensembles
C
quickrank::optimization::post_learning::pruning::LastPruning
This implements random pruning strategy for pruning ensembles
C
quickrank::optimization::post_learning::pruning::LowWeightsPruning
This implements random pruning strategy for pruning ensembles
C
quickrank::optimization::post_learning::pruning::QualityLossPruning
This implements random pruning strategy for pruning ensembles
C
quickrank::optimization::post_learning::pruning::RandomPruning
This implements random pruning strategy for pruning ensembles
C
quickrank::optimization::post_learning::pruning::ScoreLossPruning
This implements random pruning strategy for pruning ensembles
C
quickrank::optimization::post_learning::pruning::SkipPruning
This implements random pruning strategy for pruning ensembles
C
quickrank::optimization::pre_learning::PreLearningOptimization
C
quickrank::data::QueryResults
This class wraps a set of results for a given query
C
quickrank::data::RankedResults
This class generates a ranked list of results
▼
C
RegressionTree
C
ObliviousRT
C
RTNode
▼
C
RTNodeHistogram
C
RTRootHistogram
C
quickrank::io::Svml
This class implements IO on
Svml
files
C
symmatrix
Symmetric matrix implementation
C
SymMatrix< T >
C
quickrank::io::tree_node
C
quickrank::data::VerticalDataset
This class implements a
Dataset
to be used for a L-t-R task
C
quickrank::learning::forests::WeakRanker
C
Ensemble::wt
Generated on Thu Jul 21 2016 14:30:29 for QuickRank by
1.8.11