|
| ScoreLossPruning (double pruning_rate) |
|
| ScoreLossPruning (double pruning_rate, std::shared_ptr< learning::linear::LineSearch > lineSearch) |
|
| ScoreLossPruning (const pugi::xml_document &model) |
|
Cleaver::PruningMethod | pruning_method () const |
| Returns the pruning method of the algorithm. More...
|
|
bool | line_search_pre_pruning () const |
|
void | pruning (std::set< unsigned int > &pruned_estimators, std::shared_ptr< data::Dataset > dataset, std::shared_ptr< metric::ir::Metric > scorer) |
|
| Cleaver (double pruning_rate) |
|
| Cleaver (double pruning_rate, std::shared_ptr< learning::linear::LineSearch > lineSearch) |
|
| Cleaver (const pugi::xml_document &model) |
|
std::string | name () const |
| Returns the name of the optimizer. More...
|
|
virtual bool | need_partial_score_dataset () const |
|
void | optimize (std::shared_ptr< quickrank::learning::LTR_Algorithm > algo, std::shared_ptr< quickrank::data::Dataset > training_dataset, std::shared_ptr< quickrank::data::Dataset > validation_dataset, std::shared_ptr< quickrank::metric::ir::Metric > metric, size_t partial_save, const std::string model_filename) |
|
virtual std::shared_ptr< data::Dataset > | filter_dataset (std::shared_ptr< data::Dataset > dataset, std::set< unsigned int > &pruned_estimators) const |
| Process the dataset filtering out features with 0-weight. More...
|
|
virtual pugi::xml_document * | get_xml_model () const |
| Return the xml model representing the current object. More...
|
|
virtual std::vector< float > & | get_weigths () |
| Returns the learned weights. More...
|
|
bool | is_pre_learning () const |
|
| Optimization () |
|
| Optimization (const pugi::xml_document &model) |
| Generates a LTR_Algorithm instance from a previously saved XML model. More...
|
|
virtual | ~Optimization ()=default |
|
| Optimization (const Optimization &other)=delete |
| Avoid inefficient copy constructor. More...
|
|
Optimization & | operator= (const Optimization &)=delete |
| Avoid inefficient copy assignment. More...
|
|
virtual void | optimize (std::shared_ptr< learning::LTR_Algorithm > algo, std::shared_ptr< data::Dataset > training_dataset, std::shared_ptr< data::Dataset > validation_dataset, std::shared_ptr< metric::ir::Metric > metric, size_t partial_save, const std::string model_filename)=0 |
| Executes the optimization process. More...
|
|
virtual void | save (std::string model_filename, int suffix=-1) const |
| Save the current model to the output_file. More...
|
|
This implements random pruning strategy for pruning ensembles.